论文题目: | Ribavirin is effective against drug-resistant H7N9 influenza virus infections |
---|---|
作者: | Bi, Yuhai Wong, Gary Liu, Yingxia Liu, Lei Gao, George F. Shi, Yi |
联系作者: | |
刊物名称: | Protein & Cell |
期: | |
卷: | |
页: | |
年份: | 2016 |
影响因子: | 3.043 |
论文下载: | 下载地址 |
摘要: | In February and March 2013, a novel influenza A (H7N9) virus emerged in China, causing an acute respiratory distress syndrome and occasionally multiple organ failure with high fatality rates in humans (Li et al., 2014). A total of 681 laboratory-confirmed cases and 275 deaths have been reported as of November 13th, 2015, with a fatality rate of 40% (http://www.who.int/influenza/human_animal_interface/ HAI_Risk_Assessment/en/). H7N9 has been evolving and established amongst chickens in China over the past two years with occasional human infections (Lam et al., 2015; Su et al., 2015), thus posing a threat to public health. In the absence of an annually-updated effective vaccine, antiviral drugs constitute the first line of defense against H7N9 infections. H7N9 viruses already possess natural resistance to M2-ion channel blockers (amantadine and rimantadine) when it first emerged in 2013 (Gao et al., 2013). Therefore neuraminidase inhibitors (NAIs), which include oseltamivir (TamifluH), zanamivir (RelenzaH) and peramivir constitute the main antiviral drugs against H7N9 infections (Hu et al., 2013; Wu et al., 2013). However, treatment with NAIs against H7N9 infections has resulted in the emergence of drug-resistant mutant viruses, as soon as 1∼9 days after administration (Gao et al., 2013; Hu et al., 2013). Moreover, the first H7N9 isolate (A/Shanghai/1/2013(H7N9), SH-H7N9) was resistant to oseltamivir (Gao et al., 2013) |
京公网安备 11010502044263号