论文题目: | Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming |
---|---|
作者: | Liang Chaoning#, Gui Xiwu#, Zhou Cheng, Xue Yanfen, Ma Yanhe*, Tang Shuang-Yan* |
联系作者: | Ma Yanhe*, Tang Shuang-Yan* |
刊物名称: | Appl Microbiol Biotechnol |
期: | |
卷: | |
页: | |
年份: | 2014 |
影响因子: | 4.138 |
论文下载: | http://link.springer.com/article/10.1007%2Fs00253-014-6091-y |
摘要: | Thermostable alkaline pectate lyases can be potentially used for enzymatically degumming ramie in an environmentally sustainable manner and as an alternative to the currently used chemical-based ramie degumming processes. To assess its potential applications, pectate lyase from Bacillus pumilus (ATCC 7061) was cloned and expressed in Escherichia coli. Evolutionary strategies were applied to generate efficient ramie degumming enzymes. Obtained from site-saturation mutagenesis and random mutagenesis, the best performing mutant enzyme M3 exhibited a 3.4-fold higher specific activity on substrate polygalacturonic acid, compared with the wild-type enzyme. Furthermore, the half-life of inactivation at 50 degrees C for M3 mutant extended to over 13 h. In contrast, the wild-type enzyme was completely inactivated in less than 10 min under the same conditions. An upward shift in the optimal reaction temperature of M3 mutant, to 75 degrees C, was observed, which was 10 degrees C higher than that of the wild-type enzyme. Kinetic parameter data revealed that the catalysis efficiency of M3 mutant was higher than that of the wild-type enzyme. Ramie degumming with M3 mutant was also demonstrated to be more efficient than that with the wild-type enzyme. Collectively, our results suggest that the M3 mutant, with remarkable improvements in thermoactivity and thermostability, has potential applications for ramie degumming in the textile industry. |
京公网安备 11010502044263号